同型半胱氨酸(HCY)(酶循环法)检测试剂盒说明书

(微板法 96 样)

一、产品简介:

氧化型同型半胱氨酸经三乙羧乙基膦(TCEP)还原形成游离型 HCY,游离型 HCY 与底物反应循环放大,同时产生腺苷。腺苷立即水解成氨和次内嘌呤,氨在谷氨酸脱氢酶的作用下,使 NADH 转换成 NAD+,通过检测反应中 NADH 于340nm处下降速率,进而计算出 HCY的含量。

二、试剂盒组分与配制:

试剂名称	规格	保存要求	备注
试剂一	液体 16mL×1 瓶	4℃保存	
试剂二	液体 4.5mL×1 支	4℃保存	
标准管	液体 0.2mL×1 支	4℃保存	浓度为28μmol/L。

三、所需仪器和用品:

酶标仪、96 孔板、可调式移液器、离心机、蒸馏水。

四、同型半胱氨酸(HCY)含量检测:

建议正式实验前选取 2 个样本做预测定,了解本批样品情况,熟悉实验流程,避免实验样本和试剂 浪费!

1、样本制备:

① 组织样本:

取约 0.1g 组织样本,加 1mL 的生理盐水研磨,粗提液全部转移到 EP 管中,12000rpm,常温离心 10min,上清液待测。

② 液体样品: 澄清的液体可直接检测; 若浑浊则离心后取上清液检测。

2、上机检测:

- ① 酶标仪预热 30min,设置温度在 37°C,设定波长到 340nm。
- ② 所有试剂解冻至室温,在96孔板中依次加入:

试剂名称(μL)	测定管	空白管	标准管			
		(仅做一次)	(仅做一次)			
样本	10					
蒸馏水		10				
标准品			10			
试剂一	150	150	150			
混匀, 37℃孵育 5min。						
试剂二	40	40	40			
混匀,37℃孵育 2min 后于 340nm 处读取吸光值 A1,接						

着 5min 后再读取 A2,△A=A1-A2。

- 【注】: 1. 若 5min 内的△A 值大于 0.4, 须用蒸馏水对样本进行稀释, 稀释倍数 D 代入计算公式。
 - 2. 若 \triangle A 的值小于 0.005,可增加样本加样体积 VI(如由 10μ L 增至 20μ L,空白管也由 10μ L 增至 20μ L 蒸馏水,标准管是 10μ L 标准品和 10μ L 蒸馏水,其他试剂均保持不变),或者读取 A1 后,延长至 $15\min$ 后再读取 A2。则改变后的 VI 和 \triangle A 和 T 代入公式重新计算。

五、结果计算:

1、按照质量计算:

同型半胱氨酸(HCY)(nmol/g)=(C 标准×V2)×(\triangle A 测定/T- \triangle A $_{\mathfrak{D} e}$ /T)÷(\triangle A $_{\mathfrak{A} e}$ /T- \triangle A $_{\mathfrak{D}}$ /T)÷(V1÷V×W)×D =28×(\triangle A 测定/T- \triangle A $_{\mathfrak{D} e}$ /T)÷(\triangle A $_{\mathfrak{A} e}$ /T- \triangle A $_{\mathfrak{D}}$ /T)÷(\triangle A $_{\mathfrak{A} e}$ /T- \triangle A $_{\mathfrak{D}}$ /T)÷(\triangle A $_{\mathfrak{A} e}$ /T)÷W×D

2、按照体积计算:

同型半胱氨酸(HCY)(μ mol/L)=(C 标准×V2)×(\triangle A $_{3/2}$ /T- \triangle A $_{2/2}$ /T)÷(\triangle A $_{6/4}$ /T- \triangle A $_{2/2}$ /T)÷V1×D =28×(\triangle A $_{3/2}$ /T- \triangle A $_{2/2}$ /T)÷(\triangle A $_{6/4}$ /T- \triangle A $_{2/2}$ /T)×D

C 标准---标品浓度, 28µmol/L=28nmol/mL;

V1---加入样本体积, 0.01mL;

V---提取液体积, 1mL;

D---稀释倍数,未稀释即为1。

△A/T---每分钟吸光度变化率;

V2---加入标准品体积, 0.01mL;

W---质量, g;