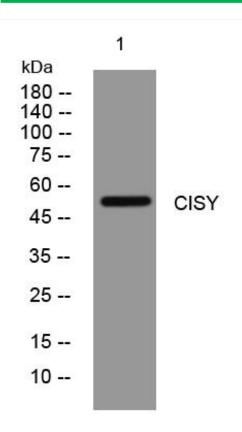


CISY mouse mAb

at	
de derived from human CISY AA ra	ange: 272-322
ects endogenous levels of CISY at	Human/Mouse/Rat
taining 50% glycerol, 0.5% BSA an	d 0.02% sodium azide.
se,lgG	
affinity-purified from mouse antiser	•
trix.	
cetyl-CoA + H(2)O + oxaloacetate sus:Citrate synthase is found in near sm.,online information:Citrate synthebohydrate metabolism; tricarboxyliention.,similarity:Belongs to the citra modimer.,	rly all cells caMABle of hase c acid cycle.,sequence
led by this gene is a Krebs tricarboom hesis of citrate from oxaloacetate a n nearly all cells caMABle of oxidati and transported into the mitochondrowided by RefSeq, Jul 2008],	ind acetyl coenzyme A. The ive metablism. This protein is
eezing and thawing!	
affinity-purified from mouse antiserraphy using epitope-specific immure trix. cetyl-CoA + H(2)O + oxaloacetate sus:Citrate synthase is found in near sem.,online information:Citrate syntherbohydrate metabolism; tricarboxylication.,similarity:Belongs to the citral modimer., led by this gene is a Krebs tricarbox hesis of citrate from oxaloacetate and nearly all cells caMABle of oxidation oxided by RefSeq, Jul 2008],	rum by nogen. = citrate + rly all cells caMABle of nase c acid cycle.,sequence ate synthase xylic acid cycle enzyme the ind acetyl coenzyme A. Tello

UpingBio technology Co.,Ltd



Usage suggestions

This product can be used in immunological reaction related experiments. For more information, please consult technical personnel.

Western Blot analysis of various cells using CISY mouse mAb